Quantization of Klein-Gordon Field
Canonical Quantization of real-valued Scalar Field
Here we only consider the real-valued
Scalar Field. The result for charged one (complex-valued) is easily to be obtained. The Hamiltonian of Scalar Field system is:
$$H=\frac 1 2 \int \td^3 \bm{x} \ \big(\pi^2+\nabla\phi\cdot \nabla\phi+m^2\phi^2 \big)$$
To quantized this system, we need let the canonical coordinate and momentum
be operators on Hilbert space
: $\pi(\bm{x})\rightarrow \hat \pi(\bm{x}) \ ; \ \phi(\bm{x})\rightarrow \hat \phi(\bm{x})$ . For simplicity, we will omit the ^ of the operator symbol. Because in the future we will discuss the Quantum Field Theory only.
The operator
should satisfy the commutation relation
:
$$[\pi(\bm{x}),\pi(\bm{x}')]=[\phi(\bm{x}),\phi(\bm{x}')]=0\ ; \ [\phi(\bm{x}),\pi(\bm{x}')]=\ti \delta^3(\bm{x}-\bm{x}')$$
They are operators in Schrodinger Picture
, which are independent of time. Equivalently, we can say they are operators in Heisenberg Picture
with the same time. That is why these relations are so-called as equal-time commutation relation
One can rewrite them into the plane wave expansion. Like what we did in Classical Theory. In Schrodinger Picture:
$$\begin{aligned} \phi(\bm{x})&=\int \frac {\td^3 \bm{k}} {(2\pi)^{3/2}} \frac 1 {\sqrt{2\omega_{|\bm{k}|}}} \Big\{ e^{\ti \bm{k}\cdot \bm{x}} a(\bm{k})+e^{-\ti \bm{k}\cdot \bm{x}} a(\bm{k})^{\dagger} \Big\} \\ \pi(\bm{x})&=\int \frac {\td^3 \bm{k}} {(2\pi)^{3/2}} \frac {\ti \omega_{|\bm{k}|}} {\sqrt{2\omega_{|\bm{k}|}}} \Big\{ -e^{\ti \bm{k}\cdot \bm{x}} a(\bm{k})+e^{-\ti \bm{k}\cdot \bm{x}} a(\bm{k})^{\dagger} \Big\} \\ \end{aligned}$$
Where we let the coefficient $a^*$ to be operator $a^\dagger$ so that $\phi$ will be a Hermitian operator, corresponding to the real-valued field requirement, and $\omega_{|\bm{k}|}=\sqrt{|\bm{k}|^2+m^2}$
We can write the inverse transform, which will represent $a(\bm{k})$ by $\phi,\pi$ ::
$$\begin{aligned} a(\bm{k})&=\int \frac {\td^3\bm{x}} {(2\pi)^{3/2}} \Big\{\sqrt{\frac {\omega_{|\bm{k}|} } 2} e^{-\ti\bm{k}\cdot \bm{x}}\phi(\bm{x})+\ti \sqrt{\frac 1 {2\omega_{|\bm{k}|}}} e^{-\ti \bm{k}\cdot \bm{x}} \pi(\bm{x}) \Big\} \\ a(\bm{k})^\dagger&=\int \frac {\td^3\bm{x}} {(2\pi)^{3/2}} \Big\{\sqrt{\frac {\omega_{|\bm{k}|} } 2} e^{\ti\bm{k}\cdot \bm{x}}\phi(\bm{x})-\ti \sqrt{\frac 1 {2\omega_{|\bm{k}|}}} e^{\ti \bm{k}\cdot \bm{x}} \pi(\bm{x}) \Big\} \\ \end{aligned}$$
And their commutator:
$$[a(\bm{k}),a(\bm{k}')]=[a(\bm{k})^\dagger,a(\bm{k}')^\dagger]=0 \ ; \ [a(\bm{k}),a(\bm{k}')^\dagger]=\delta^3(\bm{k}-\bm{k}')$$
Proof
Using the 3-d delta function: $\delta^3(\bm{x}-\bm{y})=\int \frac {\td^3 \bm{k}} {(2\pi)^3} e^{\ti \bm{k}\cdot(\bm{x}-\bm{y})}$ , we have: $$\begin{aligned} \frac 1 {\sqrt{2\omega_{|\bm{k}|}}} \Big(a(\bm{k})+a(-\bm{k})^\dagger\Big)&=\int \frac {\td^3\bm{x}} {(2\pi)^{3/2}} e^{-\ti \bm{k}\cdot \bm{x}} \phi(\bm{x})\\ \frac {-\ti\omega_{|\bm{k}|}} {\sqrt{2\omega_{|\bm{k}|}}} \Big(a(\bm{k})-a(-\bm{k})^\dagger\Big)&=\int \frac {\td^3\bm{x}} {(2\pi)^{3/2}} e^{-\ti \bm{k}\cdot \bm{x}} \pi(\bm{x}) \end{aligned}$$ That is: $$\begin{aligned} a(\bm{k})&=\int \frac {\td^3\bm{x}} {(2\pi)^{3/2}} \Big\{\sqrt{\frac {\omega_{|\bm{k}|} } 2} e^{-\ti\bm{k}\cdot \bm{x}}\phi(\bm{x})+\ti \sqrt{\frac 1 {2\omega_{|\bm{k}|}}} e^{-\ti \bm{k}\cdot \bm{x}} \pi(\bm{x}) \Big\} \\ a(\bm{k})^\dagger&=\int \frac {\td^3\bm{x}} {(2\pi)^{3/2}} \Big\{\sqrt{\frac {\omega_{|\bm{k}|} } 2} e^{\ti\bm{k}\cdot \bm{x}}\phi(\bm{x})-\ti \sqrt{\frac 1 {2\omega_{|\bm{k}|}}} e^{\ti \bm{k}\cdot \bm{x}} \pi(\bm{x}) \Big\} \\ \end{aligned}$$ We can compute some commutator: $$\begin{aligned}[] [a(\bm{k}),a(\bm{k}')] &= \int \frac {\td^3\bm{x}\td^3\bm{x}'} {(2\pi)^3} \Big\{\ti\sqrt{\frac {\omega} {4\omega'}} e^{-\ti(\bm{k}\cdot\bm{x}+\bm{k}'\cdot \bm{x}')} [\phi(\bm{x}),\pi(\bm{x}')]+\ti\sqrt{\frac {\omega'} {4\omega}}e^{-\ti(\bm{k}\cdot\bm{x}+\bm{k}'\cdot \bm{x}')} [\pi(\bm{x}),\phi(\bm{x}')] \Big\} \\ &=\int \frac {\td^3\bm{x}\td^3\bm{x}'} {(2\pi)^3} \Big\{-\sqrt{\frac {\omega} {4\omega'}} e^{-\ti(\bm{k}\cdot\bm{x}+\bm{k}'\cdot \bm{x}')} \delta^3(\bm{x}-\bm{x}')+\sqrt{\frac {\omega'} {4\omega}}e^{-\ti(\bm{k}\cdot\bm{x}+\bm{k}'\cdot \bm{x}')} \delta^3(\bm{x}-\bm{x}') \Big\} \\ &=\int \frac {\td^3 \bm{x}} {(2\pi)^3} \Big\{-\sqrt{\frac {\omega} {4\omega'}} e^{-\ti(\bm{k}+\bm{k}')\cdot \bm{x}}+ \sqrt{\frac {\omega'} {4\omega}} e^{-\ti(\bm{k}+\bm{k}')\cdot \bm{x}} \Big\} \\ &= -\sqrt{\frac {\omega} {4\omega'}}+ \sqrt{\frac {\omega'} {4\omega}} \\ &=0 \end{aligned}$$ Similarly, one can prove $[a(\bm{k})^\dagger,a(\bm{k}')^\dagger]=0$ Then we compute: $$\begin{aligned}[] [a(\bm{k}),a(\bm{k}')^\dagger] &= \int \frac {\td^3\bm{x}\td^3\bm{x}'} {(2\pi)^3} \Big\{-\ti\sqrt{\frac {\omega} {4\omega'}} e^{-\ti(\bm{k}\cdot\bm{x}-\bm{k}'\cdot \bm{x}')} [\phi(\bm{x}),\pi(\bm{x}')]+\ti\sqrt{\frac {\omega'} {4\omega}}e^{\ti(\bm{k}\cdot\bm{x}-\bm{k}'\cdot \bm{x}')} [\pi(\bm{x}),\phi(\bm{x}')] \Big\} \\ &=\int \frac {\td^3\bm{x}\td^3\bm{x}'} {(2\pi)^3} \Big\{\sqrt{\frac {\omega} {4\omega'}} e^{-\ti(\bm{k}\cdot\bm{x}-\bm{k}'\cdot \bm{x}')} \delta^3(\bm{x}-\bm{x}')+\sqrt{\frac {\omega'} {4\omega}}e^{\ti(\bm{k}\cdot\bm{x}-\bm{k}'\cdot \bm{x}')} \delta^3(\bm{x}-\bm{x}') \Big\} \\ &=\int \frac {\td^3 \bm{x}} {(2\pi)^3} \Big\{\sqrt{\frac {\omega} {4\omega'}} e^{-\ti(\bm{k}-\bm{k}')\cdot \bm{x}}+ \sqrt{\frac {\omega'} {4\omega}} e^{\ti(\bm{k}-\bm{k}')\cdot \bm{x}} \Big\} \\ &=2 \sqrt{\frac {\omega_{|\bm{k}|}} {4\omega_{|\bm{k}'|}}}\delta^3(\bm{k}-\bm{k}')\\ &=\delta^3(\bm{k}-\bm{k}') \end{aligned}$$With this result and the hold-order discussion in Classical theory, we can write the Hamiltonian as:
$$\hat H =\frac 1 2 \int \td^3\bm{k} \ \omega_{|\bm{k}|} \big(a(\bm{k})^\dagger a(\bm{k})+a(\bm{k})a(\bm{k})^\dagger\big)=E_0+\int \td^3 \bm{k} \ \omega_{|\bm{k}|} a(\bm{k})^\dagger a(\bm{k})$$
Where $E_0=\frac 1 2 \int\td^3\bm{k} \ \omega_{|\bm{k}|}\delta(0)$ .. This is a $\infty$ quantity. But it will not bother us if we admit that the absolute value of energy is non-measurable. But the relative value is work.
But in General Relativistic theory, the energy value will influence the space-time structure. This argument will not work at that situation.
With this argument, we can simply write the Hamiltonian as:
$$\hat H= \int \td^3 \bm{k} \ \omega_{|\bm{k}|} a(\bm{k})^\dagger a(\bm{k})$$
One can also write these operators in Heisenberg Picture
:
$$\begin{aligned} \phi(x)&=\int \frac {\td^3 \bm{k}} {(2\pi)^{3/2}} \frac 1 {\sqrt{2\omega_{|\bm{k}|}}} \Big\{ e^{-\ti k_\mu x^\mu} a(\bm{k})+e^{\ti k_\mu x^\mu} a(\bm{k})^{\dagger} \Big\} \\ \pi(x)&=\int \frac {\td^3 \bm{k}} {(2\pi)^{3/2}} \frac {\ti \omega_{|\bm{k}|}} {\sqrt{2\omega_{|\bm{k}|}}} \Big\{ -e^{-\ti k_\mu x^\mu} a(\bm{k})+e^{\ti k_\mu x^\mu} a(\bm{k})^{\dagger} \Big\} \\ \end{aligned}$$
Proof
With the commutator of $a,a^\dagger$ and $\hat H$ :: $$\begin{aligned}[] [a(\bm{k}),\hat H]&=\omega_{|\bm{k}|} a(\bm{k}) \\ [a(\bm{k})^\dagger,\hat H]&=-\omega_{|\bm{k}|} a(\bm{k})^\dagger \end{aligned}$$ Noting that $\hat H$ : is independent of time, we have: $$\begin{aligned} a_H(\bm{k}) &=e^{\ti t\hat H} a(\bm{k}) e^{-\ti t \hat H}=e^{-\ti \omega_{|\bm{k}|} t} a(\bm{k}) \\ a_H(\bm{k})^\dagger &= e^{\ti \omega_{|\bm{k}|} t} a(\bm{k})^\dagger \end{aligned}$$ That is, in Heisenberg Picture, the operators which is dependent of time: $$\begin{aligned} \phi(x)&=\int \frac {\td^3 \bm{k}} {(2\pi)^{3/2}} \frac 1 {\sqrt{2\omega_{|\bm{k}|}}} \Big\{ e^{-\ti k_\mu x^\mu} a(\bm{k})+e^{\ti k_\mu x^\mu} a(\bm{k})^{\dagger} \Big\} \\ \pi(x)&=\int \frac {\td^3 \bm{k}} {(2\pi)^{3/2}} \frac {\ti \omega_{|\bm{k}|}} {\sqrt{2\omega_{|\bm{k}|}}} \Big\{ -e^{-\ti k_\mu x^\mu} a(\bm{k})+e^{\ti k_\mu x^\mu} a(\bm{k})^{\dagger} \Big\} \\ \end{aligned}$$Hilbert Space of Scalar Field
The Hamiltonian of Real-valued Scalar Field is the same as the Hamiltonian of a set of non-interaction harmonic oscillators. Then we can construct the Hilbert space
by the ground state
and creation/annihilation operators
. This is also called as Fock space
.
[Definition] : vacuum of the Klein-Gordon Field
is the ground state of Scalar Field. Usually denote it as $\ket{0}$ , and it is zero if annihilation operator acts on it:
$$a(\bm{k}) \ket{0}=0 \ ; \ \forall \bm{k}$$
Assume that it is normalized as $\bra{0}0\rangle=1$ . Then the energy of vacuum is zero: $\bra{0}\hat H\ket{0}=0$ ..
[Definition] : 1-particle
state is proportional to a creation operator acting on vacuum. Usually denote it as $\ket{\bm{k}}$ :
$$\ket{\bm{k}} = \sqrt{2\omega_{|\bm{k}|}} a(\bm{k})^\dagger \ket{0}$$
And the orthonormal relation is:
$$\bra{\bm{k}}\bm{k}'\rangle = 2\omega_{|\bm{k}|} \delta^3(\bm{k}-\bm{k}')$$
One can prove that under the Lorentz Transformation that leads $\Lambda_{\bm{k}\rightarrow \bm{0}} k=(m,0,0,0)$ ,, one has
$$\bra{\Lambda_{\bm{k}\rightarrow \bm{0}} \bm{k}} \Lambda_{\bm{k}\rightarrow \bm{0}} \bm{k}'\rangle = \bra{\bm{k}}\bm{k}'\rangle$$
in this degree we say this quantity is invariant under Lorentz transformation.
And the complete relation
in 1-particle
subspace:
$$1_{\text{one-particle}}=\int \frac {\td^3\bm{k}} {2\omega_{|\bm{k}|}} \ket{\bm{k}}\bra{\bm{k}}$$
Where $\int \td^3\bm{p} (2\omega_{|\bm{p}|})^{-1}=\int_{p^0\gt 0} \td^4p \ \delta(p^\mu p_\mu-m^2)$ is covariant measure.
Proof
Consider $$\begin{aligned} \bra{\bm{k}}\bm{p}\rangle &= 2\omega_{|\bm{k}|} \delta^3(\bm{k}-\bm{p}) \\ &=2\sqrt{m^2+|\bm{k}|^2}\delta(k^1-p^1)\delta(k^2-p^2)\delta(k^3-p^3) \end{aligned}$$ Consider Lorentz transform acting on $\bm{k},\bm{p}$ : $$\begin{aligned} \bra{\Lambda\bm{k}}\Lambda \bm{p}\rangle &= 2\sqrt{m^2+|\Lambda \bm{k}|^2}\prod_i\delta(\Lambda^i_{\indent \mu}(k^\mu - p^\mu)) \\ &=2\frac {|\Lambda^0_{\indent \mu}k^\mu|} {|\text{det}J|} \prod_i \delta(k^i-p^i) \end{aligned}$$ Where $\Lambda \bm{k}$ means the spatial components of $\Lambda(\omega_{|\bm{k}|},\bm{k})$ . And: $$\begin{aligned} \det J &= \det\Big[ \frac {\partial} {\partial k^j}\Big(\Lambda^i_{\indent 0}(\sqrt{m^2+|\bm{k}|^2})-p_0)+\Lambda^i_{\indent l} (k^l-p^l)\Big)\Big] \\ &=\det\Big[\Lambda^i_{\indent 0} \frac {k^j} {\sqrt{m^2+|\bm{k}|^2}}+\Lambda^i_{\indent j} \Big] \\ &=\det \begin{bmatrix}\Lambda^1_{\indent 1}+\Lambda^1_{\indent 0} k^1/k^0 & \Lambda^1_{\indent 2}+\Lambda^1_{\indent 0} k^2/k^0 & \Lambda^1_{\indent 3}+\Lambda^1_{\indent 0} k^3/k^0 \\ \Lambda^2_{\indent 1}+\Lambda^2_{\indent 0} k^1/k^0 & \Lambda^2_{\indent 2}+\Lambda^2_{\indent 0} k^2/k^0 & \Lambda^2_{\indent 3}+\Lambda^2_{\indent 0} k^3/k^0 \\ \Lambda^3_{\indent 1}+\Lambda^3_{\indent 0} k^1/k^0 & \Lambda^3_{\indent 2}+\Lambda^3_{\indent 0} k^2/k^0 & \Lambda^3_{\indent 3}+\Lambda^3_{\indent 0} k^3/k^0 \end{bmatrix} \\ &=\det \Lambda'_0+\frac {k^1} {k^0} \det \Lambda'_1-\frac {k^2} {k^0}\det \Lambda'_2 +\frac {k^3} {k^0}\det \Lambda'_3 \\ &=\frac 1 {k^0}\sum_{\mu=0}^3 (-1)^{\mu}k_\mu \det \Lambda'_\mu \end{aligned}$$ Where $\det \Lambda'_\mu$ are determinants of minors of $\Lambda$ with cancelling $0$ --row-- $\mu$ --column. That is: $$\det \Lambda =\sum_{\mu=0}^3 (-1)^\mu \Lambda^0_{\indent \mu} \det \Lambda'_\mu $$ For $k_\mu= m \Lambda^0_{\indent \mu}$ , we have that: $\Lambda^0_{\indent \mu}k^\mu = m \Lambda^0_{\indent \mu} \Lambda^{0\mu}=m\Lambda^0_{\indent \mu} \Lambda_0^{\indent \mu}=m\delta_0^0=m$ , which means that in this case: $\Lambda k=(m,0,0,0)$ . And $\det J=\frac m {k^0}\det \Lambda=m/k^0$ That means under this special Lorentz Transformation: $\Lambda_{\bm{k}\rightarrow \bm{0}} (\sqrt{m^2+\bm{k}^2},k^1,k^2,k^3) =(m,0,0,0)$ : $$\langle\Lambda_{\bm{k}\rightarrow \bm{0}} \bm{k}|\Lambda_{\bm{k}\rightarrow \bm{0}}\bm{p}\rangle =2k^0 \prod_i \delta(k^i-p^i)=\bra{\bm{k}}\bm{p}\rangle $$ q.e.d. Consider the integral: $$\begin{aligned} \int \td^4 p \ \delta(p^\mu p_\mu-m^2) f(p)&=\int \td^3 \bm{p} \int \td p^0 \ \delta\Big((p^0)^2-m^2-|\bm{p}|^2\Big)f(p^0,\bm{p}) \\ &=\int \td^3 \bm{p} \frac {f(p^0=\sqrt{m^2+|\bm{p}|^2},\bm{p})} {2\sqrt{m^2+|\bm{p}|^2}} + \int \td^3 \bm{p} \frac {f(p^0=-\sqrt{m^2+|\bm{p}|^2},\bm{p})} {2\sqrt{m^2+|\bm{p}|^2}} \\ &=\int \frac {\td^3 \bm{p}} {2\omega_{|\bm{p}|}} \tilde{f}(\bm{p}) \end{aligned}$$ Where: $$\tilde{f}(\bm{p})=f(p^0=\omega_{|\bm{p}|},\bm{p})+f(p^0=-\omega_{|\bm{p}|},\bm{p})$$ If $f$ is independent of $p^0$ , it is simply $\tilde{f}=2f$ .. In this case, we can write down the equality of integral measure: $$\int \frac {\td^3 \bm{p}} {2\omega_{|\bm{p}|}}=\frac 1 2\int \td^4 p \ \delta(p^\mu p_\mu -m^2)=\int_{p^0\gt 0} \td^4 p \ \delta(p^\mu p_\mu -m^2)$$ The right-hand-side of the equality is obvious invariant under (Orthochronous) Lorentz Transformation.In Fock space, the Lorentz transformation for coordinates induces the Unitary transformation for operators (In finite-dimensional space Lorentz group has no unitary representation because it is not tight
. But Fock space is infinite-dimensional.).
[Definition] : Consider the coordinate transformation(special Lorentz Transformation
) $x\rightarrow x'=\Lambda x$ , the corresponding operator on Hilbert space is $U(\Lambda)$ , then we have:
$$U(\Lambda)\ket{\bm{k}}=\ket{\Lambda \bm{k}}$$
The vacuum is unique: $U(\Lambda)\ket{0}=\ket{0}$ . And the creation operator:
$$U(\Lambda) a(\bm{k})^\dagger U(\Lambda)^{-1} = \sqrt {\frac {\omega_{|\Lambda \bm{k}|}} {\omega_{|\bm{k}|}}} a(\Lambda \bm{k})^\dagger$$
Same for annihilation operator. And one can check that the field operator will be:
$$\phi'(x'=\Lambda x)\equiv U(\Lambda)\phi(x)U(\Lambda)^{-1} = \phi(x'=\Lambda x)$$
Proof
For the field operator: $$\phi(x)=\int \frac {\td^3 \bm{k}} {(2\pi)^{3/2}} \frac 1 {\sqrt{2\omega_{|\bm{k}|}}} \Big\{ e^{-\ti k_\mu x^\mu} a(\bm{k})+e^{\ti k_\mu x^\mu} a(\bm{k})^{\dagger} \Big\}$$ We have: $$\begin{aligned} U(\Lambda)\phi(x)U(\Lambda)^{-1}&=\int \frac {\td^3 \bm{k}} {(2\pi)^{3/2}} \frac {\sqrt{2\omega_{|\Lambda \bm{k}|}}} {2\omega_{|\bm{k}|}} \Big\{ e^{-\ti k_\mu x^\mu} a(\Lambda\bm{k})+e^{\ti k_\mu x^\mu} a(\Lambda\bm{k})^{\dagger} \Big\} \\ &=\int \frac {\td^3 \Lambda\bm{k}} {(2\pi)^{3/2}} \frac {\sqrt{2\omega_{|\Lambda \bm{k}|}}} {2\omega_{|\Lambda\bm{k}|}} \Big\{ e^{-\ti k_\mu x^\mu} a(\Lambda\bm{k})+e^{\ti k_\mu x^\mu} a(\Lambda\bm{k})^{\dagger} \Big\} \\ &=\phi(x'=\Lambda x) \end{aligned}$$ Where we used $k_\mu x^\mu = (\Lambda k)_\mu (\Lambda x)^\mu$ , and the covariant of the integral measure: $$\int \frac {\td^3 \bm{k}} {2\omega_{|\bm{k}|}}$$ together with that $\Lambda$ is the special Lorentz Transformation.For general cases, if $\Lambda$ is a general Lorentz Transformation, this conclusion works for operators in Schrodinger equation for they are independent of time, or equivalently, the zero-component of $k$ :
$$\phi'(\bm{x}'=\Lambda \bm{x})\equiv U(\Lambda)\phi(\bm{x})U(\Lambda)^{-1} = \phi(\bm{x}'=\Lambda \bm{x})$$
Some discussion about this and the classical form
This seems to violate the transformation regulation in Classical theory which is: $$\psi(x)\rightarrow \psi'(x'=\Lambda_{\text{spacetime}}(\omega)x) = \big(\Lambda_{\text{Field}}(\omega)\psi\big)(x=\Lambda_{\text{spacetime}}(\omega)^{-1}x') $$ But actually not. Here we use the field operator $\phi$ to create or annihilate at some spacetime point. But in classical theory we discussed that the coordinate transform with a `fixed` field. Like the passive transformation & active transformation, they are just mutually inverse. We will see this at spinor and vector field, in which the inverse relationship will be much more clear. For the $\Lambda_{\text{Field}}$ in those cases are inversion too.Causality of Scalar Field
Our quantization will not violent to the causality demanded by special Relativistic Theory. That is to say:
[Theorem] : In Heisenberg Picture, for any two point $x,y$ with spacelike interval: $\|x-y\|^2\lt 0$ . Then the field operators are commutable:
$$[\phi(x),\phi(y)]=0 \ ; \ \|x-y\|^2\lt 0$$
Proof
With the quantization that $[a(\bm{k}),a(\bm{k}')^\dagger]=\delta^3(\bm{k}-\bm{k}')$ . we have: $$\begin{aligned}[] [\phi(x),\phi(y)]&= \int \frac {\td^3 \bm{k}_1\td^3 \bm{k}_2} {(2\pi)^{3} \sqrt{4\omega_1\omega_2}}\Big\{[a(\bm{k}_1),a(\bm{k}_2)^\dagger]e^{-\ti k_1\cdot x+\ti k_2\cdot y}+[a(\bm{k}_1)^\dagger,a(\bm{k}_2)]e^{\ti k_1\cdot x-\ti k_2\cdot y} \Big\} \\ &=\int \frac {\td^3 \bm{k}} {(2\pi)^3 2\omega_{|\bm{k}|}}\big(e^{-\ti k\cdot (x-y)}-e^{\ti k\cdot (x-y)} \big) \\ & \equiv \ti \Delta(x-y) \end{aligned}$$ One can rewrite the integral as a covariant form: $$\ti \Delta(x-y)=\int \frac {\td^4 k} {(2\pi)^3} \delta(k^\mu k_\mu-m^2)\Theta(k^0)\big(e^{-\ti k\cdot (x-y)}-e^{\ti k\cdot (x-y)}\big)$$ For $x-y$ is a spacelike vector, we can always find a Lorentz Transformation so that $\ti\Delta(x-y)=f(\bm{x}-\bm{y})$ . Then: $$f(\bm{x})=\int \frac {\td^4 k} {(2\pi)^3} \delta(k^\mu k_\mu-m^2)\Theta(k^0)\big(e^{-\ti \bm{k}\cdot \bm{x}}-e^{\ti \bm{k}\cdot \bm{x}}\big)=0$$ which can be easily find by transform the parameter $\bm{k}\rightarrow -\bm{k}$ . q.e.d.Complex-valued Scalar Field
We write down the conclusion about complex-valued Scalar Field
here. The derivation is similar to the real-valued case. But we need two kinds of creation operator corresponding to the internal degrees of freedom of Complex-valued Scalar Field:
The field operator in Heisenberg Picture:
$$\phi(x) = \int \frac {\td^3 \bm{k}} {(2\pi)^{3/2}2\omega_{|\bm{k}|}} \Big\{e^{-\ti k\cdot x} a_+(\bm{k}) + e^{\ti k\cdot x} a_-(\bm{k})^\dagger \Big\}$$
Where $k\cdot x=k_\mu x^\mu$ . And the Hamiltonian:
$$\hat H=\int \td^3 \bm{k} \ \omega_{|\bm{k}|} \big(a_+(\bm{k})^\dagger a_+(\bm{k})+a_-(\bm{k})^\dagger a_-(\bm{k}) \big)$$
And the commutation relationship:
$$\begin{aligned}[] [a_+(\bm{k}),a_+(\bm{k}')] &= [a_+(\bm{k})^\dagger,a_+(\bm{k}')^\dagger]=0 \\ [a_-(\bm{k}),a_-(\bm{k}')] &= [a_-(\bm{k})^\dagger,a_-(\bm{k}')^\dagger]=0 \\ [a_+(\bm{k}),a_-(\bm{k}')] &= [a_+(\bm{k})^\dagger,a_-(\bm{k}')^\dagger]=0\\ [a_+(\bm{k}),a_+(\bm{k}')^\dagger]&=[a_-(\bm{k}),a_-(\bm{k}')^\dagger]=\delta^3(\bm{k}-\bm{k}') \end{aligned}$$
The conserved charge:
$$Q=\int\td^3 \bm{k} \ \big(a_+(\bm{k})^\dagger a_+(\bm{k})-a_-(\bm{k})^\dagger a_-(\bm{k}) \big) = \sum_{\bm{k}} \big(N_{\bm{k}}^+-N_{\bm{k}}^-\big)$$
Propagator of Scalar Field
[Definition] : Feynman Propagator
or two-point time-ordered Green's Function
of Scalar Field is defined as :
$$\ti \Delta_F(x-y):=\bra{0}\mathcal{T}\{\phi(x)\phi(y)^\dagger\}\ket{0} $$
Here the time-ordered product (for bosonic operators
) is:
$$\mathcal{T}\{A(x)B(y)\}=\Theta(x^0-y^0)A(x)B(y)+\Theta(y^0-x^0)B(y)A(x)$$
One can compute the propagator:
$$\ti \Delta_F(x-y)=\int \frac {\td^4 p} {(2\pi)^4} e^{-\ti p\cdot (x-y)} \frac {\ti} {p_\mu p^\mu-m^2+\ti \epsilon}$$
Where $\epsilon\rightarrow 0^+$ .
Proof
We compute these two terms in time-ordered product: $$\begin{aligned} \bra{0}\phi(x)\phi(y)^\dagger\ket{0}&= \int \frac {\td^3 \bm{k}_1 \td^3 \bm{k}_2} {(2\pi)^3 \sqrt{4\omega_1\omega_2}}e^{-\ti k_2\cdot x+\ti k_1\cdot y} \bra{0}a(\bm{k}_2)a(\bm{k}_1)^\dagger \ket{0} \\ &=\int \frac {\td^3 \bm{k}} {(2\pi)^3 2\omega_{|\bm{k}|}} e^{-\ti k\cdot (x-y)} \\ \bra{0}\phi(y)^\dagger\phi(x)\ket{0}&=\int \frac {\td^3 \bm{k}_1 \td^3 \bm{k}_2} {(2\pi)^3 \sqrt{4\omega_1\omega_2}}e^{-\ti k_2\cdot y+\ti k_1\cdot x} \bra{0}a(\bm{k}_2)a(\bm{k}_1)^\dagger \ket{0} \\ &=\int \frac {\td^3 \bm{k}} {(2\pi)^3 2\omega_{|\bm{k}|}} e^{\ti k\cdot (x-y)} \\ \end{aligned}$$ Then we have: $$\ti \Delta_F(x-y)=\int \frac {\td^3 \bm{p}} {(2\pi)^3 2\omega_{|\bm{p}|}} \Big\{\Theta(x^0-y^0)e^{-\ti p\cdot (x-y)} + \Theta(y^0-x^0)e^{\ti p\cdot (x-y)} \Big\}$$ Then we consider the integral: $$\begin{aligned} \int \frac {\td^4 p} {(2\pi)^4} e^{-\ti p\cdot x} \frac {\ti} {p_\mu p^\mu-m^2+\ti \epsilon}&=\int \frac {\td^3\bm{p}} {(2\pi)^4} \int \td p^0 \frac {\ti e^{-\ti p\cdot x}} {(p^0-\omega_{|\bm{p}|}+\ti \epsilon)(p^0+\omega_{|\bm{p}|}-\ti \epsilon)} \end{aligned}$$ If $x^0\lt 0$ , the Jordon's Lemma allow us to use the upper half plane. Then the pole is $-\omega_{|\bm{p}|}+\ti \epsilon$ , we have: $$\text{integral} =2\pi \ti \int \frac {\td^3 \bm{p}} {(2\pi)^4} \frac {\ti e^{\ti \omega_{|\bm{p}|}x^0+\ti \bm{p}\cdot \bm{x}}} {-2\omega_{|\bm{p}|}}=\int \frac {\td^3 \bm{p}} {(2\pi)^3 2\omega_{|\bm{p}|}} e^{\ti \omega_{|\bm{p}|}x^0 - \ti \bm{p}\cdot \bm{x}} = \int \frac {\td^3 \bm{p}} {(2\pi)^3 2\omega_{|\bm{p}|}} e^{\ti p\cdot x } $$ And if $x^0\gt 0$ , we can only use the lower half plane. Then the pole is $\omega_{|\bm{p}|}-\ti \epsilon$ , we have: $$\text{integral} =-2\pi \ti \int \frac {\td^3 \bm{p}} {(2\pi)^4} \frac {\ti e^{-\ti \omega_{|\bm{p}|}x^0+\ti \bm{p}\cdot \bm{x}}} {2\omega_{|\bm{p}|}}=\int \frac {\td^3 \bm{p}} {(2\pi)^3 2\omega_{|\bm{p}|}} e^{-\ti \omega_{|\bm{p}|}x^0 + \ti \bm{p}\cdot \bm{x}} = \int \frac {\td^3 \bm{p}} {(2\pi)^3 2\omega_{|\bm{p}|}} e^{-\ti p\cdot x } $$ That is : $$\int \frac {\td^4 p} {(2\pi)^4} e^{-\ti p\cdot x} \frac {\ti} {p_\mu p^\mu-m^2+\ti \epsilon}=\int \frac {\td^3 \bm{p}} {(2\pi)^3 2\omega_{|\bm{p}|}} \Big\{\Theta(x^0-y^0)e^{-\ti p\cdot (x-y)} + \Theta(y^0-x^0)e^{\ti p\cdot (x-y)} \Big\}$$ Or equivalently: $$\ti \Delta_F(x-y) = \int \frac {\td^4 p} {(2\pi)^4} e^{-\ti p\cdot (x-y)} \frac {\ti} {p_\mu p^\mu-m^2+\ti \epsilon}$$Discrete Symmetry of Scalar Field
Spatial Inversion
We hope the spatial inversion
induces a unitary operator so as to:
$$U_P \phi(x^0,\bm{x})U_P^{-1}= e^{\ti \theta_P} \phi(x^0,-\bm{x})$$
Where $e^{\ti\theta_P}$ is a phase-factor. And $U_P\ket{0}=\ket{0}$ .
For creation operators:
$$U_P a_+(\bm{p})U_P^{-1}=e^{\ti \theta_P} a_+(-\bm{p}) \ ; \ U_P a_-(\bm{p})^\dagger U_P^{-1}=e^{\ti \theta_P} a_-(-\bm{p})^\dagger$$
For complex-valued Klein-Gordon Field, $\theta_P$ has no physical meaning. But for real-valued Klein-Gordon Field, $e^{\ti \theta_P}=\pm 1$ ,, denoting the particle’s internal parity.
We can also represent $U_P$ by creation/annihilation operators:
$$U_P=\exp\Bigg\{\ti \frac {\pi} 2 \int \td^3 \bm{k} \Big(a_+(\bm{k})^\dagger a_+(-\bm{k})+a_-(\bm{k})^\dagger a_-(-\bm{k}) - e^{\ti \theta}\big(a_+(\bm{k})^\dagger a_+(\bm{k})+a_-(\bm{k})^\dagger a_-(\bm{k})\big) \Big) \Bigg\}$$
Charge Conjugation
We hope the charge conjugation
induces a unitary operator so as to:
$$U_C \phi(x)U_C^{-1}=e^{\ti \theta_C}\phi(x)^\dagger$$
Where $e^{\ti\theta_C}$ is a phase-factor, and also is unmeasurable for complex-valued field. For real-valued Klein-Gordon Field $e^{\ti \theta_C}=\pm 1$ .
And for creation operators:
$$U_C a_+(\bm{p})U_C^{-1}=e^{\ti \theta_C} a_-(\bm{p}) \ ; \ U_C a_-(\bm{p})^\dagger U_C^{-1}=e^{\ti \theta_C} a_+(\bm{p})^\dagger$$
Time Reversal
Time reversal
induces an anti-unitary operator. With conjugation operator $K$ we can write it as $U_T K$ , where $U_T$ is a unitary operator:
$$(U_T K) \phi(x^0,\bm{x})(U_T K)^{-1} = e^{\ti \theta_T} \phi(-x^0,\bm{x})$$
And for creation operators:
$$(U_T K) a_+(\bm{k})(U_T K)^{-1} = e^{\ti \theta_T} a_+(-\bm{k}) \ ; \ (U_T K) a_-(\bm{k})(U_T K)^{-1} = e^{-\ti \theta_T} a_-(-\bm{k})$$